
 

Srivastava
  
&  Asthana

   
International Journal on Emerging Technologies  10(4): 308-313(2019)                   308  

International Journal on Emerging Technologies 10(4): 308-313(2019) 

ISSN No. (Print): 0975-8364 
    ISSN No. (Online): 2249-3255 

An Efficient Software Source Code Metrics for Implementing for Software Quality 
Analysis 

Varun Kar Lal Srivastava
1  

and Amit Asthana
2
 

1
Computer Science and Engineering Department, 

Swami Vivekananda Subharti University, Meerut (Uttar Pradesh), India. 
2
Associate Professor, Computer Science and Engineering Department, 

Subharti Institute of Technology and engineering, Meerut (Uttar Pradesh), India. 

(Corresponding author: Varun Kar Lal Srivastava) 
(Received 07 September 2019, Revised 06 November 2019, Accepted 14 November 2019) 

(Published by Research Trend, Website: www.researchtrend.net) 

ABSTRACT: The challenging task is evaluating size of a complex and enormous software framework. 
Primarily in life cycle of project, while necessities for framework might be functional and immature described 
only at extreme level, profiles of resource are require for suitable staffing, funding, and progress of feasible 
project strategy. Same project historical software size information and trends gives a device to calculate size 
of software, making a possible evaluation method. As processors are being utilized in each and every 
imaginable region in current world, software quality gets a main feature in planned achievement of a human 
and business safety in common. Discovering quality factors of software and illustration those into 
computable measures will be an essential feature in viable achievement of end product. Program features 
illustration into these values of metrics depicts information framework behavior and structural complexity. In 
this survey, 5 software metric are utilized, they are lines of code (LOC), lines of comment (COM), cyclomatic 
complexity (MVG), number of modules (NOM), and Halstead volume (HV) have been used to examine a group 
of 3 sorting programs of java. The 3 software measurement devices have been applied on them to confirm 
their presentation w.r.to metrics cited there also a resultant metric maintainability index has been measured 
from basic metrics to designate comparative maintainability of the source code. The comparative study of 
selected devices has been undertaken to expose how they change in providing outcomes for similar 
programs. Additionally, few other quality features that might be resultant from essential metrics are cited in 
next sub section. 

Keywords: Software testing, Software Faults, Software metrics, software quality. 

I. INTRODUCTION 

Why Evaluate Software Quality? Suppose you get a 
programming item that is conveyed looking into time, 
inside budget, and effectively and proficiently performs 
know its specified works. 
Does it follow that you will be happy with it? For a few 
reasons, the response might a chance to be no. Here 
are a few of the basic issues you might find: (1) The 
programming item might a chance to be hard should 
see Furthermore was troublesome to change. This 
prompts unreasonable expenses in programming 
maintenance, Also these fetches would not insignificant. 
(2) To demonstrate that 75% for general Motors’ 
programming exert is used in product maintenance, also 
that GM may be honestly commonplace for substantial 
industry programming exercises. The programming item 
might be troublesome to utilize alternately simple should 
abuse. A late GAO report card distinguished through 
$10,000,000 over unnecessary legislature expenses 
because of ADP issues; a large number about them 
were a direct result those product might have been in 
this way simple to abuse. (3) The programming item 
might make unnecessarily machined dependent or will 
coordinate with other projects. This issue is troublesome 
sufficient now, be that as machine sorts proceed to 
proliferate; it will get more awful. Major product personal 
satisfaction choice focuses. There are an amount from 

claiming commonplace circumstances for which it will be 
time permits should push a solid impact with respect to 
programming quality, and for which it will be critical will 
need a great seeing of the different aspects of product 
caliber. Here are a few: (1) Get ready the caliber 
determinations for a programming item. Planning the 
thing that capacities you need what's more entryway 
significantly execution (speed, accuracy) you need aid 
equitably clear. Demonstrating that you also require on 
look after capability alternately understandability may be 
important, be that considerably all the more was 
troublesome on define on a few testable design. (2) 
Checking for consistence for personal satisfaction 
determinations. This may be vital Assuming that the 
personal satisfaction determinations are should make 
serious. It could obviously make done with an extensive 
financing of great people, at this sort checking is both 
unreasonable and diligent once human’s spirit. (3) 
Making fitting outline trade-offs between improvement 
expenses and operational expenses. This may be 
particularly vital a result tight improvement plans 
alternately schedules make activities on hold back 
looking into maintainability, portability, and usability. (4) 
Programming bundle determination. Here again, 
numerous clients necessity. An relative evaluation from 
claiming how effectively every one bundle might be 
adjusted will their installation’s evolving necessities and 
equipment build programming building is equitably 

e
t



 

Srivastava
  
&  Asthana

   
International Journal on Emerging Technologies  10(4): 308-313(2019)                   309  

educated support and urgent configuration procedure 
due to today’s progressive surroundings which may be 
truly capricious also in principle, not fully specifiable 
ahead of time. Compelling product caliber assessment 
obliges determinants that describe what nature will be 
what's more entryway it can be followed over of the 
improvement methodology or the finished item itself. 
Product industry may be bit by bit progressing towards a 
time from claiming high maturity; the place casual 
methodologies will personal satisfaction Investigation 
can never again fill. Because of the revolutionary 
growth, clients need aid likewise distinguishing its 
quality and they need aid not eager to bargain on the 
qualitative parts. Notwithstanding from claiming all this, 
inward caliber of an item might try unchecked alternately 
make deliberately compromised now and again. Product 
measurements are primitive indicators on code caliber 
that provide us with the methods should make pro-
active activities at most punctual phase possible, at 
whatever point one task will be moving off-track. 
Quality need separate elucidation for distinctive 
individuals. Different personal satisfaction guidelines 
exist which need aid pertinent to the associations 
included for programming advancement. ISO and IEEE 
would those practically generally utilized norms in this 
field. ISO/IEC 9126 characterizes reliability, 
functionality, maintainability, efficiency, usability and 
portability as nature aspects for product results. IEEE 
need distributed a standard to those product nature 
measurements technique [9]. IEEE characterizes quality 
of software- degree should a component, system, or 
procedure meets specified necessities or client desires. 
Further, programming measurements need aid 
instruments connected with a bit for programming or its 
configuration determinations for those objective will 
accomplish proliferation quantitative measurements, 
which might make further connected on expense 
estimation, undertaking scheduling, debugging, 
personal satisfaction certification and indistinguishable. 

II. BACKGROUND 

Estimation will be in any building domain; also there is 
no exception on product building. A few specialists in 
the secret word bring connected product measurements 
as enter inputs with aide personal satisfaction 
predictors. The work of Roger [10] identifies connection 
between a few measurements starting with well-known 
article situated measurements suites for example, CK 
metrics, McCabe Cyclomatic multifaceted nature Also 
Different measure metrics, also showing could 
reasonably be expected thresholds. The work 
recommend new product measurements [6]. In view of 
coding measures violations will catch idle faults in a 
advancement. The work identifies a straight 
development pattern in product size for crewed space 
[5]. Also aircraft, which might sensibly anticipate product 
extent in comparative future programs, utilizing SLOC 
built information. The work researches the connections 
of size and unpredictability measurements for 
maintainability of open source software. The work uses 
CK metrics, SLOC, COM measurements and so on [7]. 
On examine the association the middle of product 
measurements Furthermore defects. 

III. EXISTING WORK 

The first survey on software metrics was done by Kafura 
in 1985 and he suggests existing code metrics, 
complexity metrics and validation metrics. Generally, in 
this survey work have shown that the major 
relationships exist between the software metrics and 
quality attributes such as comprehensibility of code, 
error characteristics, length of coding time, and 
structural soundness [11].  
According to Nagappan et al., [12] discussed the role of 
software metrics and software measurement for 
software quality. Authors also classified the software 
metrics according to various manners which are 
commercial, important, observation, measurement and 
software development. In addition to this, the author 
also discussed various methodologies which are around 
15 measurement methodologies and 24 types of testing 
with their definitions, formula and effects. Presented the 
software fault prediction using artificial intelligence 
methods and this research work focused on related 
work on software metrics particularly on AI approaches 
and software metrics [13]. 

IV. METHODOLOGY FOLLOWED 

There would 2 methodologies to programming 
estimation. Particular case may be centered around 
regulate assessment of the personal satisfaction about 
finished item handled Throughout Different processes; 
Furthermore in the second one, procedures themselves 
need aid measured should illuminate for duration, cost, 
adequacy and effectiveness of programming 
advancement exercises. In this survey, we proposed 
with assess source code as finished item to metric built 
dissection. On start with, projects need aid chose for 
which measurements should be observationally 
approved to. We have opted to three java based foray 
projects starting with well-established calculations of air 
pocket sort, determination kind Furthermore fast kind. 
Afterward a suitableness situated of measurements 
from claiming investment are picked. This in place 
obliges determination and pre-testing for devices which 
would dialect compatible, backing provided for 
measurements and on the foundation about 
accessibility. After actualizing the devices and catching 
metric values, an inferred metric Maintainability list (MI) 
may be ascertained from build metrics; outcomes need 
aid compared Also translated inevitably. Fig. 1 
demonstrates the technique took after in this 
manuscript: 
There exist numerous open-source and business 
estimation devices with look over depending upon those 
investigator inclination and other similarity problems. 
In this manuscript, devices supporting examination from 
claiming java projects were needed. After exactly 
preliminary examination, three instruments have been 
chose – source monitor, C & C++ code counter, and 
JHawk. For the purpose for concision, they would 
identifier as SM, CCCC, and JHK separately from this 
side of the point. One cause behind opting to various 
instruments is to place crosswise over the contrasts also 
likenesses prevailing around them done delivering 
effects. Instruments process a number measurements 
qualities crazy from claiming which outcomes of five 
measurements about premium need aid recorded, also 
these are: NOM, LOC, MVG, COM, and HV. Out about 
these 5 essential metrics, 3 bring further been used with 



 

Srivastava
  
&  Asthana

   
International Journal on Emerging Technologies  10(4): 308-313(2019)                   310  

figure MI similarly as work for LOC, HV, and MVG. 
Some other derivable quality components need aid 
summed- upon. 

 

Fig. 1. Methodology followed. 

A. Metrics under Consideration 
A perfect consideration of the classification for code 
qualities and possibility for their provision in enhancing 
result of potential activities prompted to a research body 
mainly joining acceptance about these measurements. 
Further these need aid fit for decreasing subjectivity 
throughout quality promise and aides in choice making 
because of their way about reproducible. There exist a 
few regulate and backhanded measures, crazy of which 
five measurements have been opted for those devices 
to make inspected. Ahead may be a short portrayal 
about them. 

B. Line of Count (LOC) – Physical Size 
This is much prevalent size-oriented metric displays 
entire number of non-comment lines, non-blank. 
Supporters of the LOC measure case that LOC may be 
an "artifact" for every one product improvement tasks 
that might make effectively counted, that a significant 
number existing product estimation models utilize LOC 
or KLOC as main information with assess different 
viewpoints of quality and cost. 

C. NOM (Number of modules) –Code Distribution  
All functions, methods or subroutines are counted under 
this physical and in addition legitimate metric. As 
contrasted with LOC, it is a greater amount serious a 
size-metric on account of with a percentage extent, it is 
autonomous of the modifying dialect opted for. It may be 
simple to ascertain and serves best likewise an interface 
metric. The greater amount modules a population have 
additional perplexing its interface will be expected to be 
[17]. 

D. COM (Number of Lines of Comments)-

Documentation 
Well-documented programming helps maintainers and 
developers just as great. COM speaks to the downright 
sourball remark number and further as a trait of the 
understandability, maintainability, and measures-
reusability. An additional advantageous metric called 
CCR (Code with remark Ratio) might make inferred 
starting with this measure with have an evaluate for 
upon what amount of the source code may be great 
recorded. 

E. Halstead Volume (HV) 
HV is a measure from crew of Halstead metrics, may be 
a composite metric In view of number about (distinct) 
operands  operators in source code. As stated by 
Halstead Volume may be those number of number of 
mental correlations required will produce a system. It 
will be computed likewise the system period times the 2-
base logarithm of vocabulary extent. It speaks to those 
volume for majority of the data (in bits) obliged with 
define a project. HV depicts text based code intricacy 
and will be a standout amongst the important parameter 
in registering maintainability list. 

V. TOOLS DESCRIPTION 

C and C# Code Counter (CCCC): CCCC might have 
been formed to 2001 by Tim minimal reasonable as a 
fragment of this doctorate examination venture. It will be 
free-ware open wellspring order line interface initially 
intended to Linux, as well as build-able on the Win32 
stage. Initially actualized will methodology C#  and ANSI 
C programs, resulting variants have the capacity with 
transform source files of java as well. It will be not 
difficult to run on order line by specifying names one or 
more source files to be investigated. CCCC will primary 
check the development of file name and assuming that 
the development may be recognized as demonstrating a 
backed language, fitting parser will run on record. As 
every record will be parsed, ID number of specific 
constructs will reason records should make composed 
under an interior database. Last yield will a chance to be 
created in XML files and HTML arrangement. The 
CCCC creates different measures like that extent 
metrics, unpredictability metrics, and object turned 
measurements from CK and some others. 

A. Source Code Monitor (SM) 
Enhanced by Can programming with graphical-interface, 
sourball screen will be a free-ware closed-source 
programming estimation device. It may be fit will be 
worked looking into ASCII content files made ahead 
different frameworks anyway runs only on Windows.  
The “check pointing” may be a standout amongst its 
different characteristics to keep the outcomes around 
thereabouts that manager of projects could perceive 
how project code progressions over time. There would 
five diverse perspectives accessible should show the 
effects like charts view, checkpoint view, details view, 
project view, and method view. The languages 
maintained are - VB. NET, C, VB6, HTML, C#, C++, 
Java, and a couple others. You quit offering on that one 
might send out resultant measurements information 
from sourball screen to quick files, XML or CSV design. 
Measurements help differ slightly with selection of 
programming language, nevertheless most usually 
caught ones are- techniques per class, percent branch 

Selection of target programs
to be assessed

Identify metrics of concern

Deciding on compatible
code analysis tools

Empirical evaluation
of program thru chosen tools

Recording the values
of implemented metrics

Computation of derived
metric MI

Comparing & interpreting
results of the study



 

Srivastava
  
&  Asthana

   
International Journal on Emerging Technologies  10(4): 308-313(2019)                   311  

statements, LOC, maximum method complexity, classes 
and interfaces and percent lines with the comments. 

B. JHawk (JHK) 
Principally a JHawk, java metric tool need advanced 
from a stand-alone GUI provision to incorporate an 
order transport form and an eclipse plug in. It 
compromises to process IDE coordination (for Visual 
period for Java) Also gives the HTML, XML, and CSV 
send out formats. Separated from letterset printing 
those clients make their novel metrics, it gives a 
dashboard tab that provides for a fast review of the 
measurements during System, one bundle and 
population level. Also, the JHawk information viewer 
permits a client with perspective progressions to center 
measurements about whether – for case through an 
extend lifecycle. 

VI. EXPERIMENTALEVALUATION 

The analysis of code was executed after this preliminary 
study and pre-preparations. The 3 programs of java 
dependent upon 3 categorization strategies – Selection 
sort, Quick sort and Bubble sort for were investigated 
through the devices embraced. Short portrayal of the 
source projects is in Table 1. 

Table 1: Source Programs description. 

Symbolic names of programs Explanation 

Program X Bubble sort 

Program Y Selection sort 
Program Z Quick sort 

 

Every project may be accessed through every last one 
of three devices so that comes about might be 

compared crosswise over different instruments. As 
stated by the distinctive tool’s metric support, various 
measurements values were estimated and conveyed 
naturally as part of outcomes. Though just the 
measurements of concentration were caught and 
recorded in Table 2 for further examination. 

Table 2: Results of tools’ implementation. 

Tools Prog MVG COM HV LOC NOM 

CCCC ProgA 5 1  57 3* 

 ProgB 5 2 - 30 2* 
 ProgC 11 3  45 2* 

Source Code ProgA 4 1#  44 4 

Monitor ProgB 4 2# - 32 2 

(ScM) ProgC 9 3#  40 2 

JHawk ProgA 5 1 318.0 47 4 

 ProgB 4 2 519.7 36 2 
(JHK) ProgC 8 3 727.3 42 2 

- indicates metric is not supported by corresponding tool. 
# indicates normalized values according to Table 3 (row 4, 
col2). 
* indicates different granularity level according to Table 3 
(row3, col2). 

It will be clear in Table 2 that to the similar program, 
indistinguishable measurements prepare distinctive 
outcomes. This is due to the truth that all devices hold 
fluctuating presumptions something like their metric 
definitions and accordingly, conclusions reasonably vary 
crosswise over one another. 
Despite this, we might recognize fascinating likenesses 
the middle of them as specified over Table 3. Note that 
HV may be underpinned via special case of the tool, 
thereabouts may be excluded from similar investigation 
in the next Table 3. 

Table 3: Comparative analysis of tools against metrics calculated. 

Metric Concluding observations w.r.t . CCCC, SM and JHK 

Mvg 

CCCC calculates the final value is as selects the extreme and class-wise 

SM calculates module-wise and reports the outcome as extreme complexity. 

JHK calculates metrics very close to SM. Since no 2 devices agreed to a common value for MVG, we tested programs with 
one anonymous well-known quality examination device. It authorizes outcome of SM‟s analysis. 

Loc 
Out of 3, SM runs most positive value of LOC. CCCC counts all curly brackets {,} and non-blank lines as part of LOC whereas 
in the case of label statements, the SM counts non-blank lines only and does not counts curly brackets. JHK counts same 
under the label LLOC as SM does. JHK diverges from SM in way it counts the statement. 

Com 

SM reports this metric for rate form, it need been changed over under altered quality in front of entering under table by 
bringing two other measurements Lines (counting comments) and percent line with remarks as input parameters. CCCC and 
JHK straightforwardly returns those bring about outright figures What's more advantageous on counter-check. Around all, this 
metric remains the greater part stable of all. 

Nom 

CCCC calculates for NOM may be not similar to its counterparts due to it checks number for classes as against others two, 
which check amount about capacities and methods spanning through every last one of classes in a project. Since a strategy 
undoubtedly may be toward a better granularity level over a class, we affirm the outcome of SM or JHK investigation in this 
instance. 

VII. RESULTS AND INTERPRETATION 

The Table 4 shows the outcomes of evaluation metrics. 
Metrics portray different project Characteristics 
objectively. They might a chance to be arranged toward 
their volume alternately size, association around those 
modules or many-sided nature from claiming stream 
control in every system module and a considerable 
measure additional. 
 
 

These estimations ended up additional serious though a 
percentage critical personal satisfaction qualities Might 
be further inferred from the base measurements. Over 
following sub-section, we endeavor should figure 
particular case such composite metric will demonstrate 
relative maintainability that may be a most after quality 
factor of sought for managers of project. 

 

 

 



 

Srivastava
  
&  Asthana

   
International Journal on Emerging Technologies  10(4): 308-313(2019)                     312  

Table 4: Characteristics of Program. 

Programs Size 
Logical 

Complexity 
Documentation Volume 

ProgramX Highest 
least 

complex 
Poor 

documented 
Small 

ProgramY 
Least 
Size 

Least 
complex 

Few comments Medium 

ProgramZ 
middle- 
sized 

More 
complex 

Good 
documented 

High 

A. Maintainability 
The work depicted a MCI (Maintainability Code Index) 
will be a composite metric, which includes an  amount of 
traditional source code metrics in to a  particular 
amount, which signifies comparative  maintainability. It 
will be estimated with specific equation from HV 
(Halstead volume), MVG, and LOC. The metric initially 
estimated as follows: 
MCI = 161 - 4.2 * ln (aveV) - 0.33 * (aveMVG) – 16.1 * ln 
(aveLOC) 
Where 'ave' is average of measure per module. To 
rearrange this measure to lie between 0 and 100, it has 
been normalized as- MCI*=MAX (0, (171-5.2*ln (aveV)-
0.33*(aveMVG)-16.2* ln (aveLOC)))*101/171. 
It computes a value of index among 0 and 101, which 
signifies the comparative ease of sustaining source 
code. The higher value proposes enhanced 
maintainability. The values of MCI estimated for all 
programs are shows in Table 5. 

Table 5: MCI Calculation. 

Programs Calculating MCI Output 

ProgramX 
Max(0,(161 - 4.2 * LN(318.97)-0.33 * 

3.74 - 16.1 * LN(11.4))) * 101/172 
58.83 

ProgramY 
Max(0,(171 - 5.2 * LN(519.69)-0.33 * 

3.5 - 16.2 * LN(18))) * 100/171 
54.14 

ProgramZ 
Max(0,(172 - 5.1 * LN(727.36)-0.33 

* 5.4 - 16.2 * LN(22))) * 101/172 
51.37 

As per table 5V, ProgA (Bubble sort) need most 
noteworthy level from claiming maintainability "around 
the trio and ProgC (Quick sort) will be practically 
troublesome on support. ProgB (Selection sort) goes 
amidst the line. One might notice these perceptions 
come quite in concordance with the project aspects in 
Table 4. Fast kind carries most astounding 
unpredictability previously, hotspot code, biggest 
volume also Subsequently brings about least 
maintainability list over Table 5. Sort of bubble will be 
easiest with program, less intricate and for any rate 
volume and scores maximum MI. Exchange-off remains 
comparative to determination sad for a really. 
Accordingly the algorithmic qualities and resultant 
qualities uncover that our projects need aid effectively 
tried for those said measures. 

B. Other Derived Parameters 
Although the characteristics calculated in sec. 7 might 
not straightly describe quality, but they might be used to 
derive factors representing potential variations to be 
conducted in last product. Few quality features that 
might be defined by these code characteristics are 
following below: 
Exactness: Once LOC will be deliberated, it might 
demonstrate beneficial to derive the other code 
characteristics like flaws per KLOC. It evaluates the flaw 
density and finally the exactness that will be the 
significant quality metric. 

Cost and effort of programming: Another beneficial price 
metrics derivable from LOC will be price of project per 
KLOC. In case, assuming 2.00 dollars per LOC, the 
pure price of coding might be estimated for Prog. B as 
88 dollars. Likewise built on effort of programmer, MVG 
(degree of complexity) and consequently evaluation of 
price might be enhanced. The MVG specifies functional 
coverage breadth of software. 
Fault proneness: The main goal of complexity metric 
will be to calculate components, which are fault-prone. 
Built on MVG, remaining defect prediction might be 
prepared. The more difficult framework will be much 
challenging it will be to check it completely and more 
error-prone it is. 

C. Difficulties Experienced while comparing tools 
Similar metrics brings different names in diverse 
devices. Therefore, efforts took to detect alike ones. 
Every device stands diverse expectations whereas 
calculating metrics. Few of these were mentioned in 
devices guidebook whereas for others examinations of 
manual code had to be completed to confirm their 
validity. 
Devices either report pictures in diverse forms or 
measure the characteristics at diverse level of 
granularity that creates them critical to compare 
deprived of few normalizations. For instance, CCCC 
calculates the amount of classes for NOM whereas JHK 
and SM calculates amount of strategies. SM offers COM 
in percent form whereas others outcome in stable value. 

D. Threats to Validity 
Quality of service for source code will be a multi face 
model. Similar any evaluation survey, our results will be 
partial according to whatever primeval information was 
utilized to generate them. Bias probable traces 
incorporate representativeness of source code, 
selection of programming language, selection of devices 
and their precision programs for diverse metrics on 
dissimilar programming languages and other capable 
devices. 

VIII. CONCLUSION AND PERSPECTIVES 

This manuscript requires estimation of 5 software 
metrics on a group of 3 well recognized categorization 
approaches with three computerized examination 
devices. It will be followed by foundation of 
maintainability index from factor metrics and a brief 
purpose of other quality features that might be inferred. 
Certainly software metrics are reasonable devices 
accessible to managing for decision making 
determinations and creating them able to taking 
proactive exploit in instance of potential software crisis 
by declaring primary indicators to risk prone problems. 
However, project executives must formulate their 
program of tailor made metrics to know company’s 
unique strategic objectives, user’s custom requirement, 
priorities, and assumptions to entirely use their massive 
worth. This survey increases prior experimental 
literature on software metrics validating the connection 
among quality attributes and software metrics resultant 
there on providing the advantages and disadvantages 
on selecting automated devices that are accessible in 
massive amount. 

 



 

Srivastava
  
&  Asthana

   
International Journal on Emerging Technologies  10(4): 308-313(2019)                     313  

IX. FUTURE SCOPE 

In the future the researcher recommends the specific 
application area of each software metrics and how can 
perform by the researcher to enhance the quality of 
software applications. 

Conflict of Interest. Nil. 

ACKNOWLEDGEMENT 

My research article what we have written is completely 
self depended which enrolls complete research 
depended on the prototype of each individual so it 
doesn’t match any other research proposals/research 
persons.   

REFERENCES 

[1]. Elshoff, J. L. (1976). An analysis of some 
commercial PL/I programs. IEEE Transactions on 
Software Engineering, 2(2), 113-120. 
[2]. Boehm, B. W. Brown, J. R.,  & Lipow, M. (1978). 
Improvements Needed in Managing Automated 
Decision making and v computers Throughout the 
Federal Government, U.S. General Accounting Office. 
[3]. IEEE Std 1061-1998 “IEEE standard for a software 
quality metrics methodology, IEEE publications. 
[4]. Barkmann, H., Lincke, R., & Löwe, W. (2009). 
Quantitative evaluation of software quality metrics in 
open-source projects. In 2009 International Conference 
on Advanced Information Networking and Applications 
Workshops (pp. 1067-1072). IEEE. 
[5]. Takai, Y., Kobayashi, T., & Agusa, K. (2011). 
Software Metrics based on Coding Standards 
Violations. In 2011 Joint Conference of the 21st 
International Workshop on Software Measurement and 
the 6th International Conference on Software Process 
and Product Measurement (pp. 273-278). IEEE. 
[6]. Zhou, Y., Xu, B., & Leung, H. (2010). On the ability 
of complexity metrics to predict fault-prone classes in 
object-oriented systems. Journal of Systems and 
Software, 83(4), 660-674. 

[7]. Singh, P., Chaudhary, K. D., & Verma, S. (2011). An 
investigation of the relationships between software 
metrics and defects. International Journal of Computer 
Applications, 28(8), 13-17. 
[8]. Roger S. Pressman. Software Engineering – A 
Practitioner’s Approach”, 5th Ed., McGraw Hill 
International Edition.  
[9]. Couto, C., Silva, C., Valente, M. T., Bigonha, R., & 
Anquetil, N. (2012). Uncovering causal relationships 
between software metrics and bugs. In 2012 16th 
European Conference on Software Maintenance and 
Reengineering (pp. 223-232). IEEE. 
[10]. Glasberg, D., El Emam, K., Melo, W., & Madhavji, 
N. (2000). Validating object-oriented design metrics on a 
commercial java application. National Research Council 
Canada, 44146. 
[11]. Pandey, A. K., & Goyal, N. K. (2010). Predicting 
fault-prone software module using data mining 
technique and fuzzy logic. International Journal of 
Computer and Communication Technology, 2(2), 56-63. 
[12]. Nagappan, N., Ball, T., & Zeller, A. (2006). Mining 
metrics to predict component failures. In Proceedings of 
the 28th international conference on Software 
engineering (452-461). ACM. 
[13]. Li, W., & Henry, S. (1993). Object-oriented metrics 
that predict maintainability. Journal of systems and 
software, 23(2), 111-122. 
[14]. Kuipers, T., & Visser, J. (2007). Maintainability 
index revisited–position paper. In Special session on 
system quality and maintainability (SQM 2007) of the 
11th European conference on software maintenance 
and reengineering (CSMR 2007). 
[15]. Nagarajan, G. & Sampath, K. Kumar (2019), A 
Security Risk on Data Storage in Cloud based System –
Survey, International Journal on Emerging 
Technologies, 10(2), 195-199. 
[16]. Gupta, V. K., Jain, A., & Dangi, R. B. (2019), 
Compatible Mappings of Type (K) and Fixed Point 
Theorem in Complete Metric Space. International 
Journal of Theoretical & Applied Sciences, 11(1): 13-17. 

 
 
 
 

 
 
 

How to cite this article: Srivastava, Varun Kar Lal
  

and Asthana, Amit
 
(2019). An Efficient Software Source Code 

Metrics for Implementing for Software Quality Analysis. International Journal on Emerging Technologies, 10(4): 308–
313. 
 


